

Water Division • 559-498-1458 1910 East University • Fresno, California 93703-2988

January 31, 2000

Carl L. Carlucci, PE Senior Sanitary Engineer State of California Department of Health Services Drinking Water Operations Branch 1040 E. Herndon Avenue-Suite 205 Fresno, California 93720

Dear Mr. Carlucci:

SUBJECT: SUMMER 1999 LEAD AND COPPER SAMPLING RESULTS

Attached are results of the lead and copper monitoring performed by the City of Fresno during the summer 1999.

The City of Fresno's sample results did not exceed the action level for lead or copper with the 90th percentile samples.

The City of Fresno's water distribution system continues to be significantly below the EPA/DHS action level for both lead and copper. Accordingly, after five consecutive rounds of sampling significantly below the lead and copper action level it is interpreted that the next round of testing be resumed in the summer of 2003. Please provide, at your convenience, written confirmation of your concurrence.

Sincerely,

DEPARTMENT OF PUBLIC UTILITIES

hart R Litter

Martin R. McIntyre

Water Systems Manager

Enclosures

h:\prd\leadcopr\99ltr

CITY OF FRESNO WATER DIVISION LEAD AND COPPER RULE COMPLIANCE MONITORING RESULTS OF SUMMER 1999 MONITORING

INTRODUCTION

The United States Environmental Protection Agency (USEPA) promulgated National Primary Drinking Water Regulations for lead and copper monitoring on June 7, 1991, (56 FR26460), commonly referred to as the Lead and Copper Rule. This Rule requires that the City of Fresno monitor the water distribution system from the source to the point of delivery at the consumer's tap. Three specific monitoring protocols are included in the Lead and Copper Rule regulations:

- 1) First draw tap water monitoring for lead and copper
- 2) distribution system monitoring for various water quality parameters, and
- 3) source water monitoring for lead, copper, and various water quality parameters.

For the purposes of the Lead and Copper Rule monitoring requirements, the City of Fresno is classified as a large public water supplier. This classification is based upon the City's 106,000 service connections which supply potable water to some 498,000 customers.

SAMPLE SITE SELECTION

The City of Fresno utilized the same Tier 1-C sample pool of 131 original residences which were selected for the initial two years of testing. Two rounds of sampling and analysis for lead and copper were required for 1993 whereas only one round was required for 1994. Eighteen of the residences were not sampled for 1994; two residents had installed water filtration/softening devices, seven residents could not be contacted, and nine chose not to participate in this

sampling. One resident had moved into an adjacent dwelling which met all the criteria for a sample site and was thus added to the sample pool. Samples were thus collected for 114 sites in the sample 1994 pool.

Per the direction of the State of California Department of Health Services, Office of Drinking Water (who presently govern the Lead and Copper Rule) both the 1996 and the 1999 sampling were reduced to fifty (50) representative sites from within the original sample pool of residences. Sites were randomly selected from each tract in an attempt to maintain equal sample percentages in accordance with previous samplings. Unfortunately not all sites selected for the 1999 sampling chose to participate. The final tract percentages are outlined below.

TRACT	ENTIRE POOL %	1996 SAMPLE %	1999 SAMPLE %
A	03%	08%	06%
В	34%	30%	32%
C	31%	30%	24%
D	18%	18%	18%
E	12%	14%	18%
F	02%	00%	02%
TOTAL	100%	100%	100%

Exhibit 1 presents the completed Sample Site Justification/Collection Method Certification Form from the Lead and Copper Rule Guidance Manual. The residents performing the tap water sampling are listed in Table 1. Water quality sampling was performed at eighteen source

locations and fifteen distribution system locations. These water quality sample locations are in the same areas as the tap water sample sites and represent the sources and distribution system for all the tap water sample sites in the 1999 Tier 1-C sample pool. The locations of the water quality sample sites are listed in Table 2.

SAMPLE COLLECTION

The City of Fresno collected their 1999 samples in compliance with the Lead and Copper Rule during the period August 22 - September 13, 1999. Residents collecting tap water samples were given written instructions (Exhibit 2) along with their sample bottle.

TAP WATER SAMPLE RESULTS

Table 3 presents the results of the tap water analysis for lead and copper. The table lists the lead and copper concentrations in descending order. This was done in order to determine the 90th percentile levels as required by the Lead and Copper Rule.

Lead Results

The 90th percentile lead level was determined by multiplying the number of samples taken by $0.9 (50 \times 0.9 = 45)$. The 90th percentile lead level for the City of Fresno samples is 0.0025 mg/L which is below the EPA action level of 0.015 mg/L. The laboratory analysis detection limit for lead is the following: values less than 0.001 mg/L are reported as 0 (zero); values between 0.0010 and 0.0049 are reported as 0.0025 mg/L; values greater than 0.005 mg/L are reported directly.

Copper Results

The 90th percentile copper level was determined in the same way as for lead. The 90th percentile copper level for the City of Fresno is 0.27 mg/L which is below the EPA action level of 1.3 mg/L. The laboratory analysis detection limit for copper is the following: values less than 0.01 mg/L are reported as 0 (zero); values between 0.010 and 0.049 mg/L are reported as 0.025 mg/L; values greater than 0.05 mg/L are reported directly.

DISTRIBUTION SYSTEM AND SOURCE SAMPLE RESULTS

Water quality analysis was performed on fifteen distribution system locations and eighteen points of entry to the distribution system. These results are summarized in Table 2.

Both the lead and copper concentrations of the source water and distribution system at these sample locations are significantly below the EPA/DHS action level. The laboratory analysis detection limit for both lead and copper have both been previously explained.

FUTURE LEAD AND COPPER MONITORING

Upon completion of this fourth year of sampling for the Lead and Copper Rule, the City of Fresno's water distribution system continues to be significantly below the EPA/DHS action level. Accordingly, it is interpreted that the next round of testing be resumed in the summer of 2003, to monitor lead and copper for the EPA/DHS.

h:\prd\leadcopr\99result

TABLE 1 TAP WATER SAMPLE ANALYSIS 1999

TABLE 2 WATER QUALITY PARAMETER SAMPLE LOCATIONS AND RESULTS

TABLE 3 TAP WATER SAMPLE ANALYSIS SUMMER 1999

TABLE 2 WATER QUALITY PARAMETER SAMPLE LOCATIONS AND RESULTS

Type	System ID #	Location	Lead mg/l	Copper mg/l
Dist	W2D54	(b) (6)	0.0025	ND
Dist	W2A11		0.0025	0.25
Dist	W2C43		0.19	0.025
Dist	E7D91		0.0025	ND
Dist	W5B23		0.0060	ND
Dist	E4B45		0.066	0.21
Dist	E3B43		0.0025	0.025
Dist	E3A19		0.0080	ND
Dist	E4C47		0.013	ND
Dist	E4C68		0.068	0.14
Dist	E3C67		0.053	0.025
Dist	E3B44		0.045 🐣	ND
Dist	E8D42		0.032	0.025
Dist	E3D93		0.0032	0.025
Dist	E8A16		0.032	0.025

TABLE 2
WATER QUALITY PARAMETER SAMPLE LOCATIONS AND RESULTS

Type	System ID #	Location	Lead mg/l	Copper mg/l
Source	W-6B	(b) (6)	ND	ND
Source	W-79	(b) (9)	0.0025	ND
Source	W-86		ND	ND
Source	W-89		ND	ND
Source	W-91		0.0025	ND
Source	W-94		ND	ND
Source	W-97		ND	ND
Source	W-99		ND	ND
Source	W-120		0.0025	0.025
Source	W-131		ND	ND
Source	W-133		0.024	0.090
Source	W-134		ND	ND
Source	W-136		0.0025	0.025
Source	W-141		ND	ND
Source	W-143		0.0025	ND
Source	W-169		0.0025	ND
Source	W-178		0.0025	ND
Source	W-181		ND	ND

TABLE 3

TAP WATER SAMPLE ANALYSIS (LEAD)–SUMMER 1999

#	Rank	mg/l	#	Rank	mg/l	#	Rank	mg/l
88	50	0.022	01	32	0.0025	105	14	0
140	49	0.008	159	31	0	58	13	0
143	48	0.0025	136	30	0	111	12	0
134	47	0.0025	174	29	0	124	11	0
148	46	0.0025	129	28	0	57	10	0
147	45	0.0025	95	27	0	36	9	0
21	44	0.0025	107	26	0	39	8	0
156	43	0.0025	164	25	0	26	7	0
142	42	0.0025	83	24	0	84	6	0
10	41	0.0025	51	23	0	76	5	0
157	40	0.0025	67	22	0	20	4	0
64	39	0.0025	139	21	0	43	3	0
131	38	0.0025	168	20	0	158	2	0
130	37	0.0025	165	19	0	71	1	0
120	36	0.0025	87	18	0			
55	35	0.0025	61	17	0			
2	34	0.0025	40	16	0			
3	33	0.0025	86	15	0			

TABLE 3

TAP WATER SAMPLE ANALYSIS (COPPER)–SUMMER 1999

#	Rank	mg/l	#	Rank	mg/l	#	Rank	mg/l
136	50	0.47	83	32	0.18	124	14	0.10
148	49	0.42	21	31	0.18	76	13	0.10
168	48	0.34	67	30	0.17	58	12	0.099
130	47	0.31	40	29	0.16	105	11	0.091
174	46	0.27	107	28	0.15	2	10	0.088
156	45	0.27	140	27	0.15	71	9	0.081
139	44	0.26	3	26	0.14	165	8	0.07
147	43	0.26	55	25	0.14	36	7	0.07
159	42	0.26	1	24	0.14	157	6	0.069
143	41	0.24	134	23	0.12	57	5	0.051
129	40	0.24	95	22	0.12	111	4	0.025
10	39	0.24	39	21	0.12	84	3	0.025
64	38	0.24	43	20	0.12	20	2	0.025
120	37	0.24	131	19	0.11	158	1	0.025
164	36	0.23	87	18	0.11			
142	35	0.23	86	17	0.11			
88	34	0.22	26	16	0.11			
51	33	0.21	61	15	0.10			

EXHIBIT 1

SAMPLE SITE JUSTIFICATION/COLLECTION METHOD CERTIFICATION

LEAD AND COPPER MONITORING SUMMARY

SAMPLE SITE IDENTIFICATION AND CERTIFICATION

System's Name: CITY of FREELD KNIER DIVERTYPE: X Commun	nity Water System nsient Non Community Water System			
Address: Population Populati	on: □ >100,000 □ 10,001 to 100,000 □ 3,301 to 10,000 □ 501 to 3,300 □ 101 to 500 □ ≤100			
CERTIFICATION OF SAMPLING SI	TES			
LEAD SOLDER SITES # of single-family structures with copper pipes with lead solder installed after 1982 or lead pipes and/or lead service lines (Tier 1)	50			
# of multi-family structures with copper pipes with lead solder installed after 1982 or lead pipes and/or lead services lines (Tier 1)				
# of buildings containing copper pipes with lead solder installed after 1982 or lead pipes and/or lead service lines (Tier 2)				
# of sites that contain copper pipes with lead solder installed before 1983 (to be used only if other conditions have been exhausted) (Tier 3)	0			
TOTAL	50			
The following sources have been explored to determine the number of structures which copper with lead solder:	have interior lead pipe or			
Plumbing and/or building codes Plumbing and/or building permits Contacts within the building department, municipal clerk's office, or state regular documentation of the service area development Water Quality Data	atory agencies for historical			
Other Resources Which PWS May Utilize				
Interviews with building inspectors Surveys of service area plumbers about when and where lead solder was used fit Survey residents in sections of the service area where lead pipe and/or copper p to exist Interviews with local contractors and developers	rom 1982 to present ipe with lead solder is suspected			
Explanation of Tier 2 and Tier 3 sites (attach additional pages if necessary) TIER / USED OWLY				

LEAD AND COPPER MONITORING SUMMARY

SAMPLE SITE IDENTIFICATION AND CERTIFICATION

	CERTIFICATION OF SAMPLING SITES (continued)		
LEAD SER	RVICE LINE SITES		
# of sample	es required to be drawn from lead service line sites		
	es actually drawn from lead service line sites		
	(explain differences other than zero)		
	ing sources have been explored to determine the number of lead service lines in the distribution system:		
_ X	Distribution system maps and record drawings		
_ X _ X _ X	Information collected for the presence of lead and copper as required under §141.42 of the Code of Federal Regulations		
X	Capital Improvement plans and/or master plans for distribution system development		
	Current and historical standard operating procedures and/or operation and maintenance (O & M) manuals		
	for the type of materials used for service connections		
X	Utility records including meter installation records, customer complaint investigations and all historical		
	documentation which indicate and/or confirm the location of lead service connections		
X	Existing water quality data for indications of "troubled areas"		
Other R	esources Which PWS May Utilize		
Υ	Interviews with senior personnel		
X	Conduct service line sampling where lead service lines are suspected to exist but their presence is not confirmed		
X	Review of permit files		
X	Community survey		
X	Review of USGS maps and records		
X X X X	Interviews with pipe suppliers, contractors, and/or developers		
Explanation of fewer than 50% LSL sites identified (attach additional pages if necessary):			

CERTIFICATION OF COLLECTION METHODS

I certify that:

Each first draw tap sample for lead and copper is one liter in volume and has stood motionless in the plumbing system of each sampling site for at least six hours.

Each first draw sample collected from a single-family residence has been collected from the cold water kitchen tap or bathroom sink tap.

Each first draw sample collected from a non-residential building has been collected at an interior tap from which water is typically drawn for consumption.

Each first draw sample collected during an annual or triennial monitoring period has been collected in the months of June, July, August or September.

Each resident who volunteered to collect tap water samples from his or her home has been properly instructed by [insert water system's name] (17) or fize ou ware DIVISION sampling results. Enclosed is a copy of the material distributed to residents explaining the proper collection methods, and a list of the residents who performed sampling.

LEAD AND COPPER MONITORING SUMMARY

SAMPLE SITE IDENTIFICATION AND CERTIFICATION

RESULTS OF MONITORING
THE RESULTS OF LEAD AND COPPER TAP WATER SAMPLES MUST BE ATTACHED TO THIS DOCUMENT
of samples required 50 # of samples submitted 50 90th Percentile Pb 0.0025 ppm 90th Percentile Cu 0.27 ppm
THE RESULTS OF WATER QUALITY PARAMETER SAMPLES MUST BE ATTACHED TO THIS DOCUMENT
of samples required
CHANGE OF SAMPLING SITES
Original site address: SEE ATTACHED
New site address: SEE ATTACHED
Distance between sites (approximately): LESS THAN /2 MILE Targeting Criteria: NEW: AREA SERVED OLD: AREA SERVED
Targeting Criteria: NEW: AREA SERVED OLD: AREA SERVED
Reason for change (attach additional pages if necessary): PROX'MITY TO ATLEM SC-RUC-D
MARINE R. H. DATING MANAGOR 2/14/00
MARINE R. M. DISTURE MANAGOR Z/14/08 NAME DATE DATE

SAMPLE

Explanation of Tier 3 Sites - System #
mailed a survey card to every customer in the system soliciting
sampling volunteers. The survey card requested, among other things, the residence age and type of plumbing.
The respondents were grouped as tier 1, 2, 3 or other and contacted by telephone to verify tier classification and participation. Tier 3 sites were used as sampling points because an insufficient number of tier 1 and tier 2 sites
agreed to participate. In addition to the mass-mailed survey cards, the following sources were investigated in
order to establish the tier groupings: distribution system maps, current and historical standard operating
procedures, interviews with senior personnel, contact with building department officials and current and
historical water quality data.

CUSTOMER	LIST - 4TH ROUND -	- DHS SYSTEM #	
----------	--------------------	----------------	--

ADDRESS	CITY STATE 7ID
	CITY, STATE, ZIP
And the second s	
A	

WHY ARE WE WRITING TO YOU TODAY?

As the provider of water to your home, we are committed to delivering a safe, reliable source of drinking water to you and your family. Part of that commitment includes meeting the regulations of the California Department of Health Services. Continual monitoring and testing of water supplied to our customers is just part of the work necessary to meet the safe drinking water standards which the DHS has determined to be in the best interest of the public's health.

LEAD IN DRINKING WATER

For a number of years, the U.S. EPA has been studying the various sources and levels of lead in the environment, and its effects on children and adults. Lead is a common, natural, and often useful metal, and is present in the air, in food, in the water and soil. However, high concentrations of lead may pose adverse health effects, depending upon total exposure from all lead sources.

According to U.S. EPA reports, lead levels in drinking water are generally low in the United States. On an average, only 10 to 20% of total lead exposure comes from water. In addition, only about 1% of all source waters (that is the water supplied to the public from groundwater or wells, lakes and rivers) exceed acceptable lead levels.

Studies have shown that plumbing systems in the home are the major source for lead in drinking water. This is due to a reaction that occurs between the water and lead pipe, or lead-based solder, which is used to seal the areas where pipes join. This reaction is called corrosion, and when it takes place, a very small amount of lead dissolves (or "leaches") into the water. The degree of corrosion may also be affected by the natural mineral content of the water.

Lead levels are likely to be highest if:

- a home has lead pipes
- a home has a lead service line
- a home has copper pipes joined with lead solder
- a home is less than five years old
- a home is equipped with brass faucets

NEW LEAD REGULATIONS

In 1995 the DHS set strict, new statewide standards aimed at reducing the levels of lead in drinking water. These new standards are just a part of the Department's overall strategy to lower exposure to lead from all sources, including water, air, lead-based paint, soil and dust.

All public water suppliers must begin monitoring for lead at household taps. The results of the samples will tell water suppliers what actions, if any, will need to be taken to comply with the new regulations.

WE NEED YOUR HELP

To comply with DHS requirements, we must identify a select number of homes where samples will be taken. This means that a certain number of residences in our service area have the opportunity to have their water sampled and paid for by the water company.

We are offering the opportunity to our customers to participate in the lead testing program by serving as a "sample test site". Participation is strictly voluntary. If your home is selected as a sample test site, you will be advised of the test results for your home, when they become available.

WHAT YOU WILL BE ASKED TO DO

Lead levels in drinking water can vary greatly, depending on the household tap, the time the water has been sitting in the pipes, and the age of the plumbing system. Because of this, DHS has set specific criteria for drawing water samples.

If your home is selected as a sample test site, you will be asked to collect a few bottles of tap water twice over a one year period, beginning in 1996. You will be supplied with the sample bottles and be given specific instructions. The samples must be drawn after water has been left undisturbed in the pipes for at least six hours. They can be taken in the morning, or in the afternoon at homes where people are normally gone during the day.

If you would be interested in participating in this program, please carefully answer the questions at the bottom of this page and return it to us as soon as possible. You will be contacted if your home is selected.

WE ARE HERE TO ANSWER YOUR OUESTIONS

If you have any questions about the lead sampling program or the new regulations, please feel free to contact us. Information with basic tips on how to minimize the possibility of lead entering the water from your home plumbing system is available for any customer who requests it.

Thank you for your help!

☐ I am interested in participating in the lead sampling program.
 How long have you lived in your home? years What is the approximate age of your home? years What type of plumbing is used in your home? Copper Lead Plastic Galvanized steel Other Have you ever replaced the plumbing in your home? If yes, when? Do you have a water softener? If yes, do you have a kitchen or bathroom tap that has a soft water by-pass (a drinking water tap that is
unsoftened)? Please contact me with additional details.
Name
Address

TO BE COMPLETED BY WATER CENTER CUSTOMER/SAMPLER

Sample Date: Sample Time: Sample From Kitchen or Bathroom Faucet:	
Sample From Kitchen or Bathroom Faucet:	
I have read the Water Sampling Instructions and have taken a tap sample in accordance with these directions.	
Signature: Date:	
Print Name: Address:	
Zip: Daytime Phone:	

Water Sampling Instructions

The accuracy of this test requires that the sample water has been standing in your household plumbing for at least 6 hours, but not to exceed 12 hours. This includes both inside and outside use of any water. For this reason, it will probably be best if you take the sample first thing in the morning, or when you return home from work.

Take the sample from the Kitchen or Bathroom faucet.

Please follow these directions carefully:

- 1. Make certain that no water has been used for 6-12 hours prior to the test. If it has, wait until another time to take your sample and call us to reschedule sample pick-up.
- 2. Fill out the label on the bottle, and sign it.
- Slowly turn on the cold water tap to fill the bottle. Do not rinse the bottle. The water should trickle slowly, without splashing.
- 4. Slowly fill the bottle to the indicated fill line, taking care not to overfill it. The filling process should take a few minutes to ensure an adequately slow flow rate in the plumbing.

5. Cap the bottle and place it on your front doorstep so that we may pick it up without disturbing you. Complete the form on the reverse of this instruction sheet and place it over the bottle neck.

Thank you for your cooperation. If you have any questions regarding these instructions, please call your local Citizens Utilities Customer Service Representative at (916) 568-4200.

You will receive the results of the tests in approximately 3-4 weeks.

Calculating the 90th Percentile Results for Lead and Copper Monitoring

Instructions

- 1. List sample results for lead sampling from low to high as shown in Example 1.
- 2. Multiply the number of samples by 0.9 and round that number to the nearest whole number.

 If you are taking 5 samples, then simply average the 4th and 5th highest results.

Example 1

Step 1. List the lead sample results in a table from low to high.

Step 2. 90th Percentile = 10 samples X 0.9 = Sample number 9.

Lead Results	Sample Count	
0.0000	1	
0.0000	2	
0.0000	3	
0.0001	4	
0.0004	5	
0.0008	6	
0.0010	7	
0.0010	8	
0.0012	9◀	90th Percentile Level is 0.0012 mg/l
0.0013	10	mg.

Example 2 (Five Samples)

Step 1. List the lead sample results in a table from low to high.

Step 2. If you are taking 5 samples, then simply average the 4th and 5th highest results. Therefore, the 90th Percentile = 0.0001 + 0.0004 divided by two = $0.0005 \div 2 = 0.00025$

Lead Results	Sample Count	
0.0000	1	
0.0000	2	
0.0000	3	* .
0.0001	. 4	90th Percentile Level is 0.00025 mg/l
0.0004	5	

SAMPLE SITE IDENTIFICATION AND CERTIFICATION STATE FORM 141-R LEAD AND COPPER MONITORING SUMMARY CHANGE OF SAMPLING SITES

Type	System ID#	Location	Justification
Source	W-6B	(b) (9)	Proximity to area served
Source	W-89		Proximity to area served
Source	W-99		Proximity to area served
Source	W-131		Proximity to area served
Source	W-134		Proximity to area served
Source	W-141		Proximity to area served
Source	W-143		Proximity to area served
Source	W-178		Proximity to area served
Source	W-181		Proximity to area served
Dist	E3A19	0) (6)	Proximity to area served
Dist	E4C68		Proximity to area served
Dist	E8D42		Proximity to area served
Dist	E3D93		Proximity to area served
Dist	E8A16		Proximity to area served

SAMPLE SITE IDENTIFICATION AND CERTIFICATION STATE FORM 141-R LEAD AND COPPER MONITORING SUMMARY CHANGE OF SAMPLING SITES

Source W-6B (b) (9) Proximity to area serve Proximity Proximity to area serve Proximity
Source W-99 Proximity to area serv
Source W-131 Proximity to area serv
Source W-134 Proximity to area serv
Source W-141 Proximity to area serv
Source W-143 Proximity to area serv
Source W-178 Proximity to area serv
Source W-181 Proximity to area serv
Dist E3A19 Proximity to area serv
Dist E4C68 Proximity to area serv
Dist E8D42 Proximity to area serv
Dist E3D93 Proximity to area serv
Dist E8A16 Proximity to area serv

EXHIBIT 2

RESIDENT TAP SAMPLE COLLECTION DIRECTIONS & PROCEDURES

Water Division • 559-498-1458 1910 East University • Fresno, California 93703-2988

August 12, 1999

Dear Resident:

Thank you for participating in the City of Fresno's Lead and Copper Tap Water Monitoring Program for 1999, which is administered by the State of California, Department of Health Services, Office of Drinking Water (DHS). The success of this Program is dependent upon residents like yourself who volunteer to collect household samples for laboratory testing.

On Thursday, August 19, 1999, we will deliver to your door all items required for this Program. Instruction for the sample collection procedure will be provided at that time and if any questions arise, please contact me at 498-4136. We will return to your residence on Monday, August 23rd to pick up this sample from your doorstep.

Thank you again for your assistance in this Lead and Copper Monitoring Program.

Sincerely,

Bill Dunn

Water Operations

EXHIBIT 3 TAP WATER SAMPLE ANALYSIS MASTER LISTING

EXHIBIT 4 SOURCE SAMPLE LISTING FOR ENTIRE CITY

EXHIBIT 5

DISTRIBUTION SAMPLE LISTING FOR ENTIRE CITY

APPENDIX A

INSTRUCTIONS AND RESIDENT CHAIN OF CUSTODY

APPENDIX B

DISTRIBUTION SYSTEM RESULTS

APPENDIX C

SOURCE WATER RESULTS

Submission Number Date Reported Date Received 09/03/99 9908000568 08/19/99

Bob Little Fresno City Water Division 1910 E. University Ave. Fresno, CA 93703

Project ID: Project Desc:

METHOD EPA 200.8

TEST Copper, by ICPMS, DW, for Pb/Cu Rule

Lab Number	Sample Description	Date Sampled	Time Sampled	Date Prep.	Date Anal.	Analyte	Result	Units	PQL	Dil
126793	Well #6B	08/19/99	08:25	09/01/99	09/01/99	Copper (Cu)		mg/L	0.01	
126794	Well #94	08/19/99	08:35	09/01/99	09/01/99	Copper (Cu)		mg/L	0.01	
126795	Well #181	08/19/99	08:45	09/01/99	09/01/99	Copper (Cu)		mg/L	0.01	
126796	Well #133	08/19/99	09:00	09/01/99	09/01/99	Copper (Cu)		mg/L	0.01	
126797	Well #143	08/19/99	09:50	09/01/99	09/01/99	Copper (Cu)		mg/L	0.01	
126798	Well #86	08/19/99	10:00	09/01/99	09/01/99	Copper (Cu)		mg/L	0.01	
126799 126799	Well #89A1	08/19/99	10:10	09/01/99	09/01/99	Copper (Cu)	ND	mg/L	0.01	
126800	Well #134	08/19/99	10:20	09/01/99	09/01/99	Copper (Cu)		mg/L	0.01	
126801	Well #131	08/19/99	10:30	09/01/99	09/01/99	Copper (Cu)		mg/L	0.01	
126802 Temp: 20C	Well #178 C	08/19/99	10:40	09/01/99	09/01/99	Copper (Cu)	ND	mg/L	0.01	
icinp. to	(

MD mg/L μg/L mg/kg μg/kg

None Detected Milligrams/Liter = ppm Micrograms/Liter = ppb Milligrams/Kilogram = ppm Micrograms/Kilogram = ppb

Practical Quantitation Limit
Dilution Factor
Reportable Detection Limit
derived by (PQL x Dil)
Higher limits may be the result of exceptional sample matrices or interferences

1 ppm = 1000 ppb 1 ppb = 0.001 ppm Conversions:

Date Reported Date Received 08/19/99 09/03/99

Bob Little Fresno City Water Division 1910 E. University Ave. Fresno, CA 93703

Submission Number 9908000568

Project Desc Project ID

METHOD EPA 200.8

Lead, by	Lead, by ICPMS, DW, for Pb/Cu Rule	'Cu Rule					EI	EPA 200.8			
Lab Number	Sample Description	Date Sampled	Time Sampled	Date Prep.	Date Anal.	Analyte	Result	Units	PQL	Dil	DLR
126793	Well #6B	08/19/99	08:25	09/01/99	09/01/99	Lead (Pb)	ND	mg/L	0.001	1	0.001
126794	Well #94	08/19/99	08:35	09/01/99	09/01/99	Lead (Pb)	ND	mg/L	0.001	-	0.001
126795	Well #181	08/19/99	08:45	09/01/99	09/01/99	Lead (Pb)	ND	mg/L	0.001	1	0.001
126796	Well #133	08/19/99	09:00	09/01/99	09/01/99	Lead (Pb)	0.024	mg/L	0.001	-	0.001
126797	Well #143	08/19/99	09:50	09/01/99	09/01/99	Lead (Pb)	0.0025	mg/L	0.001	-	0.001
126798	Well #86	08/19/99	10:00	09/01/99	09/01/99	Lead (Pb)	ND	mg/L	0.001	-	0.001
126799	Well #89A1	08/19/99	10:10	09/01/99	09/01/99	Lead (Pb)	ND	mg/L	0.001	1	0.001
126800	Well #134	08/19/99	10:20	09/01/99	09/01/99	Lead (Pb)	ND	mg/L	0.001	1	0.001
126801	Well #131	08/19/99	10:30	09/01/99	09/01/99	Lead (Pb)	ND	mg/L	0.001	1	0.001
Temp: 22C 126802 Temp: 20C	Well #178	08/19/99	10:40	09/01/99	09/01/99	Lead (Pb)	0.0025	mg/L	0.001	1	0.001

mg/L µg/L mg/kg µg/kg B

None Detected
Milligrams/Liter = ppm
Micrograms/Liter = ppb
Milligrams/Kilogram = ppm
Micrograms/Kilogram = ppb

DIR :

Practical Quantitation Limit
Dilution Factor
Reportable Detection Limit
derived by (PQL x Dil)
Higher limits may be the result of exceptional sample matrices or interferences

1 ppm = 1000 ppb 1 ppb = 0.001 ppm Conversions:

BSK LABORATORIES

Date Reported: Date Received: 09/03/99 08/19/99

Fresno City Water Division 1910 E. University Ave. Fresno, CA 93703

Bob Little

Submission Number : Project II) : 9908000568

Project Desc:

METHOD SM 2130-B

TEST Turbidity, Lead/Copper Rule Lab Number Sample Number Description 126793 Well #6B Temp: 19C 126794 Well #94 Temp: 20C 126795 Well #181	Date Sampled 08/19/99 08/19/99	Time Sampled 08:25 08:35 08:45	Date Prep. 08/19/99 08/19/99	Date Anal. 08/19/99 08/19/99	Analyte Turbidity Turbidity Turbidity	Result ND ND ND	METHOD ME 2130-B Units NIU NIU NIU NIU	PQL 0.1 0.1	Di	DLR 0.1 0.1
126793 Well #6B	08/19/99	08:25	08/19/99	08/19/99	Turbidity	ND	UIN	0.1	1	0.1
126794 Well #94	08/19/99	08:35	08/19/99	08/19/99	Turbidity	ND	UTU	0.1	1	0.1
126795 Well #181	08/19/99	08:45	08/19/99	08/19/99	Turbidity	ND	UIN	0.1	1	0.1
126796 Well #133	08/19/99	09:00	08/19/99	08/19/99	Turbidity	ND	UTU	0.1	1	0.1
126797 Well #143	08/19/99	09:50	08/19/99	08/19/99	Turbidity	ND	UTN	0.1	1	0.1
126798 Well #86	08/19/99	10:00	08/19/99	08/19/99	Turbidity		UTU	0.1	1	0.1
126799 Well #89A1	08/19/99	10:10	08/19/99	08/19/99	Turbidity		UTN	0.1	1	0.1
126800 Well #134	08/19/99	10:20	08/19/99	08/19/99	Turbidity		UIN	0.1	-	0.1
126801 Well #131	08/19/99	10:30	08/19/99	08/19/99	Turbidity	ND	NIN	0.1	1	0.1
126802 Well #178 Temp: 20C	08/19/99	10:40	08/19/99	08/19/99	Turbidity	ND	UTU	0.1	-	0.1
Temp: 20C										

MD mg/L μg/L mg/kg μg/kg

None Detected Milligrams/Liter = ppm Micrograms/Liter = ppb Milligrams/Kilogram = ppm Micrograms/Kilogram = ppb

PQL : Dil : DLR :

Practical Quantitation Limit
Dilution Factor
Reportable Detection Limit
derived by (PQL x Dil)
Higher limits may be the result of exceptional sample matrices or interferences

1 ppm = 1000 ppb 1 ppb = 0.001 ppm Conversions:

Date Reported Date Received 08/19/99 09/03/99

Fresno City Water Division 1910 E. University Ave. Fresno, CA 93703

Copper, by ICPMS, DW, for Pb/Cu Rule

Bob Little

Submission Number: 9908000567

Project Desc: Project ID

METHOD EPA 200.8

Date Anal. Analyte Result Unit 09/01/99 Copper (Cu) 0.025 m 09/01/99 Copper (Cu) ND m 09/01/99 Copper (Cu) ND m	Analyte Copper (Cu) Copper (Cu)
Result 0.025 ND	Result Units PQL 0.025 mg/L 0.01 ND mg/L 0.01
are are I man	PQL 0.01

MD mg/L μg/L mg/kg μg/kg

None Detected Milligrams/Liter = ppm Micrograms/Liter = ppb Milligrams/Kilogram = ppm Micrograms/Kilogram = ppb

Practical Quantitation Limit
Dilution Factor
Reportable Detection Limit
derived by (PQL x Dil)
Higher limits may be the result of exceptional sample matrices or interferences

BSK LABORATORIES

1 ppm = 1000 ppb1 ppb = 0.001 ppmConversions:

Date Reported: Date Received 09/03/99 08/19/99

Fresno City Water Division 1910 E. University Ave. Fresno, CA 93703

Bob Little

Lead, by ICPMS, DW, for Pb/Cu Rule

Submission Number:
Project ID:
Project Desc: 9908000567

METHOD EPA 200.8

126792 V Temp:23.1C	126791 Temp: 23 70	126790 Temp: 22.70	126789 1 Tamp: 22.50	126788	126787 Temp: 22 10	126786	Lab Number
126792 Well #91 Temp:23.1C	126791 Well #169	126790 Well #99	126789 Well #79	Well #97	126787 Well #141	Well #120	Sample Description
08/19/99	08/19/99	08/19/99	08/19/99	08/19/99	08/19/99	08/19/99	Date Sampled
13:30	13:10	13:00	12:37	11:45	11:35	11:17	Time Sampled
09/01/99	09/01/99	09/01/99	09/01/99	09/01/99	09/01/99	09/01/99	Date Prep.
09/01/99	09/01/99	09/01/99	09/01/99	09/01/99	09/01/99	09/01/99	Date Anal.
Lead (Pb)	Lead (Pb)	Lead (Pb)	Lead (Pb)	Lead (Pb)	Lead (Pb)	Lead (Pb)	Analyte
0.0025	0.0025	ND	0.0025	ND	ND	0.0025	Result
mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	Units
0.001	0.001	0.001	0.001	0.001	0.001	0.001	PQL
1	_	1	1	1	-	-	Dil
0.001	0.001	0.001	0.001	0.001	0.001	0.001	DLR

ND mg/L μg/L mg/kg μg/kg

None Detected Milligrams/Liter = ppm Micrograms/Liter = ppb Milligrams/Kilogram = ppm Micrograms/Kilogram = ppb

Practical Quantitation Limit
Dilution Factor
Reportable Detection Limit
derived by (PQL x Dil)
Higher limits may be the result of exceptional sample matrices or interferences

1 ppb = 0.001 ppm1 ppm = 1000 ppbConversions:

Fresno City Water Division 1910 E. University Ave. Fresno, CA 93703 Bob Little

Turbidity, Lead/Copper Rule

METHOD SM 2130-B

Submission Number:
Project ID:
Project Desc:

Date Reported: Date Received

09/03/99 9908000567

08/19/99

Lab Number	Lab Sample Number Description	Date Sampled	Time Sampled	Date Prep.	Date Anal.	Analyte	Result	Units	PQL	Dil	DLR
126786	Well #120	08/19/99	11:17	08/19/99	08/19/99		ND	NIU	0.1	1	0.1
126787	Well #141	08/19/99	11:35	08/19/99	08/19/99		ND	DIN	0.1	₩	0.1
Temp:22.10 126788	1C Well #97	08/19/99	11:45	08/19/99	08/19/99		ND	DIN	0.1	1	0.1
Temp:25.30 126789	.3C Well #79	08/19/99	12:37	08/19/99	08/19/99	Turbidity	ND NTU 0.1 1	DIN	0.1	1	0.1
Temp:22.6C 126790 Well #99	Well #99	08/19/99	13:00	08/19/99	08/19/99		ND	DIN	0.1	1	0.1
Temp: 22.7C	126791 Well #169	08/19/99	13:10	08/19/99	08/19/99		ND	UTU	0.1	1	0.1
Temp: 23.7C 126792 Well #91	Well #91	08/19/99	13:30	08/19/99	08/19/99	Turbidity	ND	NTU	0.1	-	0.1
1emp:23.1C	C										

 $\begin{array}{c} \mathrm{ND} \\ \mathrm{mg/L} \\ \mu \mathrm{g/L} \\ \mathrm{mg/kg} \\ \mu \mathrm{g/kg} \end{array}$

None Detected
Milligrams/Liter = ppm
Micrograms/Liter = ppb
Milligrams/Kilogram = ppm
Micrograms/Kilogram = ppb

Practical Quantitation Limit
Dilution Factor
Reportable Detection Limit
derived by (PQL x Dil)
Higher limits may be the result of exceptional sample matrices or interferences

BSK LABORATORIES

1 ppm = 1000 ppb 1 ppb = 0.001 ppm

Conversions:

Sample Activity Form

W Drinking W Monitori UR Surface OL Solids									#	Sar	Lab	Rec	San
WPE NEY OW Drinking Water W Monitoring Well W Monitoring Well WR Surface Water OL Solids	2					75		8/19/00	Date	Sample Detail	Laboratory:_	Received by_	Sampled by_
	04.0	200	0.70	200	8	8:45	233	25.25	Time	ail	Bow	1	0
Analysis Key 502 Volatiles 504 DBCP, EDB 505 HCCDP 507 N/P Pesticid 515 Phenoxy Ad		2					- 8	D.	Type		P	3	Ĉ,
sis kolatile BCP. CCDP									State Form		1	2	W
3 des d Herbicides	W W/78	181	8441	5/4/2		107	127	2 1 # (19(1)	Location Description		Lab Reference:		UK N Stelinquished by Letyn Pala Mad P A GO 9 18 C
525 531_1 547 548 549									502.2			Date:	₹ ₹
2 T G C =		1							504		2	∞ /	ate S
DEHA.DEHP.Benzo Carbamates Glyphosates Endothalt Diquat	 1	7						504	3-DAY RUSH		3008	- /	$\leq \mathcal{N} \subseteq$
DE III males sales	de								505		∞	18/90 Time	VIS
Ben	17	7						1	507			8	ion
õ		フ							515.1		895	III.	
L						T			525		∞ .) 016
N - C - 25	1	+							531.1	ı		> 1	A in
N 111W.S		1							547		No of Samples		$\mathcal{Z} \subseteq$
		3							548		San		ive ac
Benzo(a Trihalon Title 22: Fluoride		>				T			549			-	rsit
Benzo(a)pyrene Trihalomethanes Title 22 horgani Fluoride Nitrates		DI							550		CS ANI FAI		. V
Benzo(a)pyrene Irihalomethanes Litle 22 horganics Fluoride	117	2			1	T			THM'S		3		J V0
iá	13	1			T				504 LD			10	9,
		0			T				G-1			()	370
									F			NA IN) w
LD AR Pb.Cu TOC									N			~	J
								1	LD-AR			onta	
								GR	S-ALHPA			CI P	
Lo detect Arsenic Lead and Copper Turbidity							1	F	ADON			нопе	
itect A and C	1	-	77	-		-	X	Pb/	Cu Rule			: (5	
opper									тос			59) 4	
- 0	800	8 6	3	139	D	2	E	TEI	200			ontact Phone: (559) 498-4136	
	7		++			0	-	101	The Contract of the Contract o			1136	
						+	+					4625800	
		+	$\dagger \dagger$		\dashv	+	+						

Sample Activity Form

THE NEY OW Drinking Water AW Monitoring Well SUR Surface Water OL Solids	Vine Key	*		8/19/09/	# Date	Laboratory:	Sampled by
		2000	000000000000000000000000000000000000000	45 35	Tlme	Bove	50
Analysis Key 502 Volatiles 504 DBCP, EDB 505 HCCDP 507 N/P Pesticides 515 Phenoxy Acid I				3	Туре	6	3 2
					State Form		W &
Analysis Key 502 Volatiles 504 DBCP, EDB 505 HCCDP 507 N/P Pesticides 515 Phenoxy Acid Herbicides		134	Supplied to the supplied to th	WELL # 6	Location Description	Lab Reference:	City of Fresno, Water Division 1910 E. University Ave., 93703 We have imquished by Love July Ave., 93703 Date: 8 / 19/90 Time: 14. 15 Av. Port
525 531.1 547 548 549			7 000	16			resno,
55 11.1 8 8					502.2		o, Water
DETA. Carbar Glypho Endoth Diquat					504	0	∞ to te
DEHADEHP Benzo Carbamates Glyphosates Endothall		17			04 3-DAY RUSH	3008	NIC SE
les les		75			505	0.7	Division 1910 E
9770		A			515.1	895	2 2 3
					525	8	191
		4-			531.1	10 1	, Per
550 11IM'S					547	No of Samples	4 2 L
		11/2			548	San	y G
Benzo(a Tribaton Title 22: Fluoride		0			549	uples '	199 Time
Benzo(a)pyrene Tritualomethanes Litte 22-horganics Fluoride Nitrates		0			550	7	ity Ave
rene ranes		12			THM'S	3	ve.
»		20			504 LD		93
					G-1		(3)
					F		703
LD-VB LD-VB LOC					N		
			T		LD-AR		mtac
					GRS-ALHPA		(P)
Lo detect Arsenic Lead and Copper Turbidity			, sights ,		RADON		опе:
ad Arr			700		Pb/Cu Rule		(55)
senic		90 90 00	2000	10.	тос		9) 491
-		5 28 6		160	emp c		ontact Phone: <u>(559) 498-4136</u>
_			1				16
- -	++-						

City of Fresno, Water Division 1910 E. University Ave., 93703 Sample Activity Form

supled by S. WEDDS

scived by 100 have Relinquished by Same Date B / 19 / 99 Time 14: 11 AM PM Contact P)

Date: B / 19 / 40 Trans 1 1 AM PM Contact Phone: (559) 498-4136
all Lab Reference: QQQ 1 S
RUSH
X X Star
X 17ET # 17(1809: 173.5) X 17ET # 17(1809: 173.5)
DM X 1767 #
Analysis Key 502 Volatiles 504 DBCP FOR
us d Herbicides
dividuality

APPENDIX D

RESIDENT SAMPLE SITE RESULTS